A Load-Based Hybrid MAC Protocol for Underwater Wireless Sensor Networks

24Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In underwater wireless sensor networks (UWSNs), media access control (MAC) is important because it may have a significant impact on network performance; however, the complex and changeable underwater communication environment is a great challenge for the MAC protocol. In flowing water, the network nodes are constantly moving, and the number of competitors in the network also varies. The existing hybrid MAC protocol neither can adapt to the dynamic network load nor can switch the access control protocols with changing network loads, which may result in poor network performance. In order to solve the above problems, this paper proposes a load-based time slot allocation (LBTSA) protocol. The LBTSA selects the slot allocation scheme, from a set of possible schemes, according to the instantaneous network load. Then, based on the relative priority of the nodes and the optimal number of backoff stages, the host node selects the optimal access control protocol. This not only adapts well to changing network loads but also maximizes network throughput. By assuming that the number of competitors obeys a universal Poisson distribution, the LBSTA protocol and the HCR (a hybrid MAC protocol using channel reservation) protocol are compared. As the results show, the throughput of the LBTSA is higher than that of the HCR protocol, and the end-to-end delay of the LBTSA is lower than that of the HCR protocol.

Cite

CITATION STYLE

APA

Zhang, Z., Shi, W., Niu, Q., Guo, Y., Wang, J., & Luo, H. (2019). A Load-Based Hybrid MAC Protocol for Underwater Wireless Sensor Networks. IEEE Access, 7, 104542–104552. https://doi.org/10.1109/ACCESS.2019.2926158

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free