Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites

31Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Genome-wide association studies have identified genomic loci, whose single-nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin-immunoprecipitation-coupled sequencing and microarray expression profiling in TMPRSS2-ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor-binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR-binding motif, which is enriched in the neighborhood of canonical androgen-responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor-suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH.

Cite

CITATION STYLE

APA

Bu, H., Narisu, N., Schlick, B., Rainer, J., Manke, T., Schäfer, G., … Klocker, H. (2016). Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites. Human Mutation, 37(1), 52–64. https://doi.org/10.1002/humu.22909

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free