Human activity recognition using smart phone sensors

0Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In the new age technology, there exists many smart devices, which are using human activity data in reshaping the modern world dynamics of every aspect of our life be it health trackers, smartphones, intelligent systems. One futuristic concept is the connected devices that are way more efficient, adaptive, responsive and flexible to any conditions and reacts according to the data. For some connected devices to work more efficiently, human activity data is required. This data can be used to make devices smarter and using it can be useful in solving many problems of healthcare, efficient surveillance. Our work is an effort in efficient surveillance and using deep learning models, we detect the presence of human activities in different environments and use the data to analyze better to have efficient and effective surveillance. Many different models of deep learning model are used in our work from the likes of CNN (Convolutional Neural Networks) to LSTM (Long Short-Term Memory Networks. The data collected is from sensors’ data which is present in the mobile and can make the predictions about various activities like sitting, walking, jumping and some other human activities. The prime focus here is to detect various canonical activities that are not given to the system.

Cite

CITATION STYLE

APA

Kumar, V., & Sharma, A. (2019). Human activity recognition using smart phone sensors. International Journal of Recent Technology and Engineering, 8(2 Special Issue 7), 445–450. https://doi.org/10.35940/ijrte.B1082.0782S719

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free