Development of algorithms for determining heart failure with reduced and preserved ejection fraction using nationwide electronic healthcare records in the UK

4Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Background Determining heart failure (HF) phenotypes in routine electronic health records (EHR) is challenging. We aimed to develop and validate EHR algorithms for identification of specific HF phenotypes, using Read codes in combination with selected patient characteristics. Methods We used The Healthcare Improvement Network (THIN). The study population included a random sample of individuals with HF diagnostic codes (HF with reduced ejection fraction (HFrEF), HF with preserved ejection fraction (HFpEF) and non-specific HF) selected from all participants registered in the THIN database between 1 January 2015 and 30 September 2017. Confirmed diagnoses were determined in a randomly selected subgroup of 500 patients via GP questionnaires including a review of all available cardiovascular investigations. Confirmed diagnoses of HFrEF and HFpEF were based on four criteria. Based on these data, we calculated a positive predictive value (PPV) of predefined algorithms which consisted of a combination of Read codes and additional information such as echocardiogram results and HF medication records. Results The final cohort from which we drew the 500 patient random sample consisted of 10 275 patients. Response rate to the questionnaire was 77.2%. A small proportion (18%) of the overall HF patient population were coded with specific HF phenotype Read codes. For HFrEF, algorithms achieving over 80% PPV included definite, possible or non-specific HF HFrEF codes when combined with at least two of the drugs used to treat HFrEF. Only in non-specific HF coding did the use of three drugs (rather than two) contribute to an improvement of the PPV for HFrEF. HFpEF was only accurately defined with specific codes. In the absence of specific coding for HFpEF, the PPV was consistently below 50%. Conclusions Prescription for HF medication can reliably be used to find HFrEF patients in the UK, even in the absence of a specific Read code for HFrEF. Algorithms using non-specific coding could not reliably find HFpEF patients.

Cite

CITATION STYLE

APA

Sundaram, V., Zakeri, R., Witte, K. K., & Quint, J. K. (2022). Development of algorithms for determining heart failure with reduced and preserved ejection fraction using nationwide electronic healthcare records in the UK. Open Heart, 9(2). https://doi.org/10.1136/openhrt-2022-002142

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free