Abstract
Coherent motions, which describe the collective movements of individuals in crowd, widely exist in physical and biological systems. Understanding their underlying priors and detecting various coherent motion patterns from background clutters have both scientific values and a wide range of practical applications, especially for crowd motion analysis. In this paper, we propose and study a prior of coherent motion called Coherent Neighbor Invariance, which characterizes the local spatiotemporal relationships of individuals in coherent motion. Based on the coherent neighbor invariance, a general technique of detecting coherent motion patterns from noisy time-series data called Coherent Filtering is proposed. It can be effectively applied to data with different distributions at different scales in various real-world problems, where the environments could be sparse or extremely crowded with heavy noise. Experimental evaluation and comparison on synthetic and real data show the existence of Coherence Neighbor Invariance and the effectiveness of our Coherent Filtering. © 2012 Springer-Verlag.
Cite
CITATION STYLE
Zhou, B., Tang, X., & Wang, X. (2012). Coherent filtering: Detecting coherent motions from crowd clutters. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7573 LNCS, pp. 857–871). https://doi.org/10.1007/978-3-642-33709-3_61
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.