Synergism in carbon nanotubes and carbon-dots: counter electrode of a high-performance dye-sensitized solar cell

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Dye-sensitized solar cells (DSSCs) play a crucial role in the realm of renewable energy technology by converting solar energy into electrical energy in an efficient and cost-effective way. In the pursuit of improving the photoconversion efficiency (PCE) of DSSCs, this work aims at fabricating a new counter electrode (CE) using a binary composite of heteroatom-doped carbon dots (C-dots) and functionalized multi-walled carbon nanotubes (o-MWCNTs). We demonstrate that this binary composite exhibits superior performance to pristine o-MWCNTs, resulting in a remarkable enhancement in the PCE. The PCE of the o-MWCNT/C-dots composite was measured at an impressive 4.28%, significantly outperforming the pristine o-MWCNT electrode, which yielded an efficiency of 2.24%. The enhanced performance of the o-MWCNT/C-dots composite can be attributed to the synergistic effects of heteroatom-doped C-dots since their binding to the o-MWCNTs by activated oxygenic surface functional groups increases the surface area from 218 to 253 m2 g−1. This enhanced surface area results from the reduction of π-π stacking interactions of the individual tubes and production of a new hollow channel in the structure that provides an ideal scaffold for I2 adsorption and electron transfer. We demonstrate the role of C-dots on MWCNT's property modulation toward higher PCE by density functional theory (DFT) calculation and electrochemical analysis. Electron-excess N and S doped C-dots exhibit strong catalytic activity, allowing for rapid electron transfer processes in the CE-electrolyte surface via the donor acceptor mechanism, whereas electron-deficient B doped C-dots undermine the cell performance by forming a charge recombination trap at the CE surface. The synthesized composite has higher redox reversibility up to 100 CV cycles and chemical stability, studied by the post-performance material characterization. The findings offer a promising avenue for the development of high-performance DSSCs, which will help to promote sustainable and renewable energy technologies.

Cite

CITATION STYLE

APA

Hasan, A. M. M., & Susan, M. A. B. H. (2024). Synergism in carbon nanotubes and carbon-dots: counter electrode of a high-performance dye-sensitized solar cell. RSC Advances, 14(11), 7616–7630. https://doi.org/10.1039/d4ra00601a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free