Interpenetrated magnesium-tricalcium phosphate composite: Manufacture, characterization and in vitro degradation test

5Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration. The present investigation is focused on the design of an interpenetrated magnesium-tricalcium phosphate (Mg-TCP) composite and its evaluation under immersion test. In the study, TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration (CAMI) technique. The microstructure, composition, distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy, elemental chemical analysis and X-ray diffraction. The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI, even small pores below 2 μm have been filled with Mg, giving to the composite a good interpenetration. The degradation rate of the Mg-TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.

Cite

CITATION STYLE

APA

Casas-Luna, M., Tkachenko, S., Horynová, M., Klakurková, L., Gejdos, P., Diaz-De-La-Torre, S., … Montufar, E. B. (2017). Interpenetrated magnesium-tricalcium phosphate composite: Manufacture, characterization and in vitro degradation test. Acta Metallurgica Sinica (English Letters), 30(4), 319–325. https://doi.org/10.1007/s40195-017-0560-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free