Abstract
Mitochondrial dysfunction is a hallmark of beta-amyloid (Aβ)-induced neurotoxicity in Alzheimer's disease (AD), and is considered an early event in AD pathology. Diammonium glycyrrhizinate (DG), the salt form of Glycyrrhizin, is known for its anti-inflammatory effects, resistance to biologic oxidation and membranous protection. In the present study, the neuroprotective effects of DG on Aβ 1-42-induced toxicity and its potential mechanisms in primary cortical neurons were investigated. Exposure of neurons to 2 μM Aβ 1-42 resulted in significant viability loss and cell apoptosis. Accumulation of reactive oxygen species (ROS), decreased mitochondrial membrane potential, and activation of caspase-9 and caspase-3 were also observed after Aβ 1-42 exposure. All these effects induced by Aβ 1-42 were markedly reversed by DG treatment. In addition, DG could alleviate lipid peroxidation and partially restore the mitochondrial function in Aβ 1-42-induced AD mice. DG also significantly increased the PGC-1α expression in vivo and in vitro, while knocking down PGC-1α partially blocked the protective effects, which indicated that PGC-1α contributed to the neuroprotective effects of DG. Furthermore, DG significantly decreased the escape latency and search distance and increased the target crossing times of Aβ 1-42-induced AD mice in the Morris water maze test. Therefore, these results demonstrated that DG could attenuate Aβ 1-42-induced neuronal injury by preventing mitochondrial dysfunction and oxidative stress and improved cognitive impairment in Aβ 1-42-induced AD mice, indicating that DG exerted potential beneficial effects on AD. © 2012 Zhu et al.
Cite
CITATION STYLE
Zhu, X., Chen, C., Ye, D., Guan, D., Ye, L., Jin, J., … Xu, Y. (2012). Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ 1-42-induced neurotoxicity. PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0035823
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.