Abstract
Forosamine at the 17-position of spinosyns A and D was hydrolyzed under mild acidic conditions to give the corresponding 17-pseudoaglycones. The tri-O-methylrhamnose at the 9-position of the 17-pseudoaglycone of spinosyn A was hydrolyzed under more vigorous acidic conditions to give the aglycone of spinosyn A. However, these conditions led to decomposition of the 17-pseudoaglycone of spinosyn D, presumably due to more facile protonation of the 5,6-double bond to produce a tertiary carbonium ion which undergoes further rearrangements. Spinosyns J and L (3'-O-demethyl spinosyn A and D, respectively) obtained from fermentation of biosynthetically-blocked mutant strains of Saccharopolyspora spinosa, were oxidized to give the corresponding 3'-keto-derivatives and the resultant keto-sugars were then β-eliminated under basic conditions to give the 9-pseudoaglycones of spinosyns A and D respectively. Forosamine at the 17-position of the 9-pseudoaglycone of spinosyn D was then readily hydrolyzed to yield the aglycone of spinosyn D.
Cite
CITATION STYLE
Creemer, L. C., Kirst, H. A., & Paschal, J. W. (1998). Conversion of spinosyn A and spinosyn D to their respective 9- and 17-pseudoaglycones and their aglycones. Journal of Antibiotics, 51(8), 795–800. https://doi.org/10.7164/antibiotics.51.795
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.