PHB/bentonite compounds. Effect of clay modification and thermal aging on properties

Citations of this article
Mendeley users who have this article in their library.


Poly(3-hydroxybutyrate) (PHB) was compounded with three different Bentonite clays: natural, purified by ultrasound/sonicated and organically modified with hexadecyltrimethylammonium bromide. PHB/Bentonite masterbatches with 30% clay were prepared in a laboratory internal mixer and letdown with pure matrix to 1% and 3% w/w clay. Test samples were injection molded and characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Increase in Bentonite hydrophobic character was evinced by FTIR for organoclays. XRD of composites showed increase in clay interlayer distance and peak broadening, suggesting formation of intercalated nanocomposites. DSC showed increase in crystallinity and crystallization rate for compounds, especially for PHB/organoclay formulations. Thermal aging was conducted by exposing specimens at 115°C for up to 120 hours, and mechanical properties were measured according to ASTM standards. Elastic modulus increased and impact strength decreased with time and clay content; clay purification had little effect on the tensile properties. Tensile strength of thermal aged samples showed little variation, except for the organoclay nanocomposites, for which it significantly decreased with exposure time. SEM images displayed a whitened honeycomb structure and detachment of PHB/Bentonite layers which may be connected to cold crystallization and degradation processes taking place during thermal aging.




Almeida, T. G., Costa, A. R. M., Wellen, R. M. R., Canedo, E. L., & Carvalho, L. H. (2017). PHB/bentonite compounds. Effect of clay modification and thermal aging on properties. Materials Research, 20(6), 1503–1510.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free