In this paper, the approximation of a fractional-order PIDcontroller is proposed to control a DC-DC converter. The synthesis and tuning process of the non-integer PID controller is described step by step. A biquadratic approximation is used to produce a flat phase response in a band-limited frequency spectrum. The proposed method takes into consideration both robustness and desired closed-loop characteristics, keeping the tuning process simple. The transfer function of the fractional-order PID controller and its time domain representation are described and analyzed. The step response of the fractional-order PID approximation shows a faster and stable regulation capacity. The comparison between typical PID controllers and the non-integer PID controller is provided to quantify the regulation speed introduced by the fractional-order PID approximation. Numerical simulations are provided to corroborate the effectiveness of the non-integer PID controller.
CITATION STYLE
Soriano-Sánchez, A. G., Rodríguez-Licea, M. A., Pérez-Pinal, F. J., & Vázquez-López, J. A. (2020). Fractional-order approximation and synthesis of a PID controller for a buck converter. Energies, 13(3). https://doi.org/10.3390/en13030629
Mendeley helps you to discover research relevant for your work.