Comparison of: (2S,4R)-4-[18F]Fluoroglutamine, [11C]Methionine, and 2-Deoxy-2-[18F]Fluoro-D-Glucose and Two Small-Animal PET/CT Systems Imaging Rat Gliomas

6Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Purpose: The three positron emission tomography (PET) imaging compounds: (2S,4R)-4-[18F]Fluoroglutamine ([18F]FGln), L-[methyl-11C]Methionine ([11C]Met), and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) were investigated to contrast their ability to image orthotopic BT4C gliomas in BDIX rats. Two separate small animal imaging systems were compared for their tumor detection potential. Dynamic acquisition of [18F]FGln was evaluated with multiple pharmacokinetic models for future quantitative comparison. Procedures: Up to four imaging studies were performed on each orthotopically grafted BT4C glioma-bearing BDIX rat subject (n = 16) on four consecutive days. First, a DOTAREM® contrast enhanced MRI followed by attenuation correction CT and dynamic PET imaging with each radiopharmaceutical (20 min [11C]Met, 60 min [18F]FDG, and 60 min [18F]FGln with either the Molecubes PET/CT (n = 5) or Inveon PET/CT cameras (n = 11). Ex vivo brain autoradiography was completed for each radiopharmaceutical and [18F]FGln pharmacokinetics were studied by injecting 40 MBq into healthy BDIX rats (n = 10) and collecting blood samples between 5 and 60 min. Erythrocyte uptake, plasma protein binding and plasma parent-fraction were combined to estimate the total blood bioavailability of [18F]FGln over time. The corrected PET-image blood data was then applied to multiple pharmacokinetic models. Results: Average BT4C tumor-to-healthy brain tissue uptake ratios (TBR) for PET images reached maxima of: [18F]FGln TBR: 1.99 ± 0.19 (n = 13), [18F]FDG TBR: 1.41 ± 0.11 (n = 6), and [11C]Met TBR: 1.08 ± 0.08, (n = 12) for the dynamic PET images. Pharmacokinetic modeling in dynamic [18F]FGln studies suggested both reversible and irreversible uptake play a similar role. Imaging with Inveon and Molecubes yielded similar end-result ratios with insignificant differences (p > 0.25). Conclusions: In orthotopic BT4C gliomas, [18F]FGln may offer improved imaging versus [11C]Met and [18F]FDG. No significant difference in normalized end-result data was found between the Inveon and Molecubes camera systems. Kinetic modelling of [18F]FGln uptake suggests that both reversible and irreversible uptake play an important role in BDIX rat pharmacokinetics.

Cite

CITATION STYLE

APA

Miner, M. W. G., Liljenbäck, H., Virta, J., Helin, S., Eskola, O., Elo, P., … Roivainen, A. (2021). Comparison of: (2S,4R)-4-[18F]Fluoroglutamine, [11C]Methionine, and 2-Deoxy-2-[18F]Fluoro-D-Glucose and Two Small-Animal PET/CT Systems Imaging Rat Gliomas. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.730358

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free