Abstract
The anteroventral cochlear nucleus (AVCN) acts as the first relay center in the conduction of auditory information from the ear to the brain, and it probably performs a crucial role in sound localization. Auditory nerve input to the principal neurons of the AVCN, the spherical bushy cells, appears to be mediated by an excitatory amino acid such as glutamate, which acts at a specialized, large synaptic ending called an endbulb of Held. Presumably, endbulb synapses contain some specific combination of glutamate receptors to facilitate rapid neurotransmission of auditory signals. AMPA glutamate receptor composition at the endbulb synapses was examined with both light and electron microscope immunocytochemistry. Electron microscope localization of AMPA receptors was examined with two techniques, preembedding immunoperoxidase and postem-bedding immunogold, which provide maximum sensitivity and greatest accuracy, respectively. Dense and frequent labeling was seen with the AMPA receptor subunit antibodies GluR2/3 and GluR4, which were colocalized at the endbulb synapses. In contrast, immunolabeling with antibody to GluR2 was low. These data indicate that the major glutamate receptor at this synapse is an AMPA receptor made up mainly of GluR3 and GluR4 subunits. Receptors composed of these subunits display properties, such as calcium permeability and rapid desensitization, that facilitate their specialized functions in auditory information processing.
Author supplied keywords
Cite
CITATION STYLE
Wang, Y. X., Wenthold, R. J., Ottersen, O. P., & Petralia, R. S. (1998). Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. Journal of Neuroscience, 18(3), 1148–1160. https://doi.org/10.1523/jneurosci.18-03-01148.1998
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.