Robot motion planning method based on incremental high-dimensional mixture probabilistic model

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The sampling-based motion planner is the mainstream method to solve the motion planning problem in high-dimensional space. In the process of exploring robot configuration space, this type of algorithm needs to perform collision query on a large number of samples, which greatly limits their planning efficiency. Therefore, this paper uses machine learning methods to establish a probabilistic model of the obstacle region in configuration space by learning a large number of labeled samples. Based on this, the high-dimensional samples' rapid collision query is realized. The influence of number of Gaussian components on the fitting accuracy is analyzed in detail, and a self-adaptive model training method based on Greedy expectation-maximization (EM) algorithm is proposed. At the same time, this method has the capability of online updating and can eliminate model fitting errors due to environmental changes. Finally, the model is combined with a variety of sampling-based motion planners and is validated in multiple sets of simulations and real world experiments. The results show that, compared with traditional methods, the proposed method has significantly improved the planning efficiency.

Cite

CITATION STYLE

APA

Zha, F., Liu, Y., Wang, X., Chen, F., Li, J., & Guo, W. (2018). Robot motion planning method based on incremental high-dimensional mixture probabilistic model. Complexity, 2018. https://doi.org/10.1155/2018/4358747

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free