Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance

18Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Arctic Ocean is a region particularly prone to ongoing ocean acidification (OA) and climate-driven changes. The influence of these changes on Arctic phytoplankton assemblages, however, remains poorly understood. In order to understand how OA and enhanced irradiances (e.g., resulting from sea–ice retreat) will alter the species composition, primary production, and eco-physiology of Arctic phytoplankton, we conducted an incubation experiment with an assemblage from Baffin Bay (71°N, 68°W) under different carbonate chemistry and irradiance regimes. Seawater was collected from just below the deep Chl a maximum, and the resident phytoplankton were exposed to 380 and 1000 µatm pCO2 at both 15 and 35% incident irradiance. On-deck incubations, in which temperatures were 6 °C above in situ conditions, were monitored for phytoplankton growth, biomass stoichiometry, net primary production, photo-physiology, and taxonomic composition. During the 8-day experiment, taxonomic diversity decreased and the diatom Chaetoceros socialis became increasingly dominant irrespective of light or CO2 levels. We found no statistically significant effects from either higher CO2 or light on physiological properties of phytoplankton during the experiment. We did, however, observe an initial 2-day stress response in all treatments, and slight photo-physiological responses to higher CO2 and light during the first five days of the incubation. Our results thus indicate high resistance of Arctic phytoplankton to OA and enhanced irradiance levels, challenging the commonly predicted stimulatory effects of enhanced CO2 and light availability for primary production.

Cite

CITATION STYLE

APA

Hoppe, C. J. M., Schuback, N., Semeniuk, D., Giesbrecht, K., Mol, J., Thomas, H., … Tortell, P. D. (2018). Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance. Polar Biology, 41(3), 399–413. https://doi.org/10.1007/s00300-017-2186-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free