Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town, South Africa

22Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Urban land use and land cover (LULC) change can be efficiently monitored with high-resolution satellite products for a variety of purposes, including sustainable planning. These, together with machine learning strategies, have great potential to detect even subtle changes with satisfactory accuracy. In this study, we used PlaneScope Imagery and machine learning strategies (Random Forests, Support Vector Machines, Naïve Bayes and K-Nearest Neighbour) to classify and detect LULC changes over the City of Cape Town between 2016 and 2021. Our results showed that K-Nearest Neighbour outperformed other classifiers by achieving the highest overall classification of accuracy (96.54% with 0.95 kappa), followed by Random Forests (94.8% with 0.92 kappa), Naïve Bayes (93.71% with 0.91 kappa) and Support Vector Machines classifiers with relatively low accuracy values (92.28% with 0.88 kappa). However, the performance of all classifiers was acceptable, exceeding the overall accuracy of more than 90%. Furthermore, the results of change detection from 2016 to 2021 showed that the high-resolution PlanetScope imagery could be used to track changes in LULC over a desired period accurately.

Cite

CITATION STYLE

APA

Lefulebe, B. E., Van der Walt, A., & Xulu, S. (2022). Fine-Scale Classification of Urban Land Use and Land Cover with PlanetScope Imagery and Machine Learning Strategies in the City of Cape Town, South Africa. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free