Compressive Strength Estimation and CO2 Reduction Design of Fly Ash Composite Concrete

24Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Fly ash is broadly utilized to produce concrete materials. This study presents a strength estimation model and a CO2 reduction design method for concrete with fly ash. First, a hydration-based strength (HBS) model is proposed for the evaluation of strength development at different ages of fly ash composite concrete with different mix proportions. Second, CO2 emissions for 1 MPa strength were evaluated. The analysis results show that, as the fly ash-to-binder ratio (FA/B) increased, the CO2 emissions for 1 MPa strength decreased. For concrete with a low water-to-binder ratio (W/B), the addition of high content of fly ash had an obvious dilution effect, which increased the reaction degree of cement and reduced CO2 emissions for 1 MPa strength. Moreover, the extension of the design age could reduce CO2 emissions for 1 MPa strength. Third, a genetic-algorithm-based optimal design model is proposed to find the individual mass of cement and fly ash of low-CO2 concrete. The analysis results show that, as the water contents increased from 160 to 170 kg/m3, to obtain the same strength, cement mass and fly ash mass increased, while the water/binder ratio and fly ash/binder ratio did not change. This means that the reduction in mixed water is one feasible way to lower CO2 emissions. In summary, the proposed strength–emission integrated analysis method is useful for designing sustainable fly ash composite concrete with the desired strength and low levels of CO2 emissions.

Cite

CITATION STYLE

APA

Han, Y., Lin, R. S., & Wang, X. Y. (2022). Compressive Strength Estimation and CO2 Reduction Design of Fly Ash Composite Concrete. Buildings, 12(2). https://doi.org/10.3390/buildings12020139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free