Many microorganisms, including spermatozoa and forms of bacteria, oscillate or twist a hairlike flagella to swim. At this small scale, where locomotion is challenged by large viscous drag, organisms must generate time-irreversible deformations of their flagella to produce thrust. To date, there is no demonstration of a self propelled, synthetic flagellar swimmer operating at low Reynolds number. Here we report a microscale, biohybrid swimmer enabled by a unique fabrication process and a supporting slender-body hydrodynamics model. The swimmer consists of a polydimethylsiloxane filament with a short, rigid head and a long, slender tail on which cardiomyocytes are selectively cultured. The cardiomyocytes contract and deform the filament to propel the swimmer at 5-10 μms-1, consistent with model predictions. We then demonstrate a two-tailed swimmer swimming at 81 μms-1. This small-scale, elementary biohybrid swimmer can serve as a platform for more complex biological machines.
CITATION STYLE
Williams, B. J., Anand, S. V., Rajagopalan, J., & Saif, M. T. A. (2014). A self-propelled biohybrid swimmer at low Reynolds number. Nature Communications, 5. https://doi.org/10.1038/ncomms4081
Mendeley helps you to discover research relevant for your work.