In the last 40 years, remote sensing technology has evolved, significantly advancing ocean observation and catapulting its data into the big data era. How to efficiently and accurately process and analyze ocean big data and solve practical problems based on ocean big data constitute a great challenge. Artificial intelligence (AI) technology has developed rapidly in recent years. Numerous deep learning (DL) models have emerged, becoming prevalent in big data analysis and practical problem solving. Among these, convolutional neural networks (CNNs) stand as a representative class of DL models and have established themselves as one of the premier solutions in various research areas, including computer vision and remote sensing applications. In this study, we first discuss the model architectures of CNNs and some of their variants as well as how they can be applied to the processing and analysis of ocean remote sensing data. Then, we demonstrate that CNNs can fulfill most of the requirements for ocean remote sensing applications across the following six categories: reconstruction of the 3D ocean field, information extraction, image superresolution, ocean phenomena forecast, transfer learning method, and CNN model interpretability method. Finally, we discuss the technical challenges facing the application of CNN-based ocean remote sensing big data and summarize future research directions.
CITATION STYLE
Wang, H., & Li, X. (2024, March 1). DeepBlue: Advanced convolutional neural network applications for ocean remote sensing. IEEE Geoscience and Remote Sensing Magazine. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MGRS.2023.3343623
Mendeley helps you to discover research relevant for your work.