Multimodal analysis using [11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer’s disease

16Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Multimodal PET/MRI image data simultaneously obtained from patients with early-stage of Alzheimer’s disease (eAD) were assessed in order to observe pathophysiologic and functional changes, as well as alterations of morphology and connectivity in the brain. Fifty-eight patients with mild cognitive impairment and early dementia (29 males, 69 ± 12 years) underwent [11C]Pittsburgh compound-B (PiB) PET/MRI with 70-min PET and MRI scans. Sixteen age-matched healthy controls (CTL) (9 males, 68 ± 11 years) were also studied with the same scanning protocol. Cerebral blood flow (CBF) was calculated from the early phase PET images using the image-derived input function method. A standardized uptake value ratio (SUVr) was calculated from 50 to 70 min PET data with a reference region of the cerebellar cortex. MR images such as 3D-T1WI, resting-state functional MRI (RS-fMRI), diffusion tensor image (DTI), and perfusion MRI acquired during the dynamic PET scan were also analyzed to evaluate various brain functions on MRI. Results: Twenty-seven of the 58 patients were determined as eAD based on the results of PiB-PET and clinical findings, and a total of 43 subjects’ data including CTL were analyzed in this study. PiB SUVr values in all cortical regions of eAD were significantly greater than those of CTL. The PiB accumulation intensity was negatively correlated with cognitive scores. The regional PET-CBF values of eAD were significantly lower in the bilateral parietal lobes and right temporal lobe compared with CTL, but not in MRI perfusion; however, SPM showed regional differences on both PET- and MRI-CBF. SPM analysis of RS-fMRI delineated regional differences between the groups in the anterior cingulate cortex and the left precuneus. VBM analysis showed atrophic changes in the AD group in a part of the bilateral hippocampus; however, analysis of fractional anisotropy calculated from DTI data did not show differences between the two groups. Conclusion: Multimodal analysis conducted with various image data from PiB-PET/MRI scans showed differences in regional CBF, cortical volume, and neuronal networks in different regions, indicating that pathophysiologic and functional changes in the AD brain can be observed from various aspects of neurophysiologic parameters. Application of multimodal brain images using PET/MRI would be ideal for investigating pathophysiologic changes in patients with dementia and other neurodegenerative diseases.

Cite

CITATION STYLE

APA

Okazawa, H., Ikawa, M., Jung, M., Maruyama, R., Tsujikawa, T., Mori, T., … Kosaka, H. (2020). Multimodal analysis using [11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer’s disease. EJNMMI Research, 10(1). https://doi.org/10.1186/s13550-020-00619-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free