Complete intersection singularities of splice type as universal abelian covers

48Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

It has long been known that every quasi-homogeneous normal complex surface singularity with ℚ-homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called "splice type singularities," which generalize Brieskorn complete intersections. Second, these arise as universal abelian covers of a class of normal surface singularities with ℚ-homology sphere links, called "splice-quotient singularities." According to the Main Theorem, splice-quotients realize a large portion of the possible topologies of singularities with ℚ-homology sphere links. As quotients of complete intersections, they are necessarily ℚ-Gorenstein, and many ℚ-Gorenstein singularities with ℚ-homology sphere links are of this type. We conjecture that rational singularities and minimally elliptic singularities with ℚ-homology sphere links are splice-quotients. A recent preprint of T Okuma presents confirmation of this conjecture. © Geometry & Topology Publications.

Cite

CITATION STYLE

APA

Neumann, W. D., & Wahl, J. (2005). Complete intersection singularities of splice type as universal abelian covers. Geometry and Topology, 9, 699–755. https://doi.org/10.2140/gt.2005.9.699

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free