Nonaqueous Li-Mediated Nitrogen Reduction: Taking Control of Potentials

36Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The performance of the Li-mediated ammonia synthesis has progressed dramatically since its recent reintroduction. However, fundamental understanding of this reaction is slower paced, due to the many uncontrolled variables influencing it. To address this, we developed a true nonaqueous LiFePO4 reference electrode, providing both a redox anchor from which to measure potentials against and estimates of sources of energy efficiency loss. We demonstrate its stable electrochemical potential in operation using different N2- and H2-saturated electrolytes. Using this reference, we uncover the relation between partial current density and potentials. While the counter electrode potential increases linearly with current, the working electrode remains stable at lithium plating, suggesting it to be the only electrochemical step involved in this process. We also use the LiFePO4/Li+ equilibrium as a tool to probe Li-ion activity changes in situ. We hope to drive the field toward more defined systems to allow a holistic understanding of this reaction.

Cite

CITATION STYLE

APA

Tort, R., Westhead, O., Spry, M., Davies, B. J. V., Ryan, M. P., Titirici, M. M., & Stephens, I. E. L. (2023). Nonaqueous Li-Mediated Nitrogen Reduction: Taking Control of Potentials. ACS Energy Letters, 8(2), 1003–1009. https://doi.org/10.1021/acsenergylett.2c02697

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free