Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia

53Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Microglia are considered a major target for modulating neuroinflammatory and neurodegenerative disease processes. Upon activation, microglia secrete inflammatory mediators that contribute to the resolution or to further enhancement of damage in the central nervous system (CNS). Therefore, it is important to study the intracellular pathways that are involved in the expression of the inflammatory mediators. Particularly, the role of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and glycogen synthase kinase-3 (GSK-3) pathways in activated microglia is unclear. Thus, in the present study we investigated the role of Akt and its downstream pathways, GSK-3 and mTOR, in lipopolysaccharide (LPS)-activated primary rat microglia by pharmacological inhibition of these pathways in regard to the expression of cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1) and to the production of prostaglandin (PG) E2and PGD2.Findings: We show that inhibition of Akt by the Akt inhibitor X enhanced the production of PGE2and PGD2without affecting the expression of COX-2, mPGES-1, mPGES-2 and cytosolic prostaglandin E synthase (cPGES). Moreover, inhibition of GSK-3 reduced the expression of both COX-2 and mPGES-1. In contrast, the mTOR inhibitor rapamycin enhanced both COX-2 and mPGES-1 immunoreactivity and the release of PGE2and PGD2. Interestingly, NVP-BEZ235, a dual PI3K/mTOR inhibitor, enhanced COX-2 and reduced mPGES-1 immunoreactivity, albeit PGE2and PGD2levels were enhanced in LPS-stimulated microglia. However, this compound also increased PGE2in non-stimulated microglia.Conclusion: Taken together, we demonstrate that blockade of mTOR and/or PI3K/Akt enhances prostanoid production and that PI3K/Akt, GSK-3 and mTOR differently regulate the expression of mPGES-1 and COX-2 in activated primary microglia. Therefore, these pathways are potential targets for the development of novel strategies to modulate neuroinflammation. © 2012 de Oliveira et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

de Oliveira, A. C. P., Candelario-Jalil, E., Langbein, J., Wendeburg, L., Bhatia, H. S., Schlachetzki, J. C. M., … Fiebich, B. L. (2012). Pharmacological inhibition of Akt and downstream pathways modulates the expression of COX-2 and mPGES-1 in activated microglia. Journal of Neuroinflammation, 9. https://doi.org/10.1186/1742-2094-9-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free