Human T Cells Express a Functional Ionotropic Glutamate Receptor GluR3, and Glutamate by Itself Triggers Integrin-Mediated Adhesion to Laminin and Fibronectin and Chemotactic Migration

  • Ganor Y
  • Besser M
  • Ben-Zakay N
  • et al.
175Citations
Citations of this article
106Readers
Mendeley users who have this article in their library.
Get full text

Abstract

T cells may encounter glutamate, the major excitatory neurotransmitter in the nervous system, when patrolling the brain and in glutamate-rich peripheral organs. Moreover, glutamate levels increase in the CNS in many pathological conditions in which T cells exert either beneficial or detrimental effects. We discovered that normal human T cells, human T leukemia cells, and mouse anti-myelin basic protein T cells express high levels of glutamate ion channel receptor (ionotropic) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype 3 (GluR3). The evidence for GluR3 on T cells includes GluR3-specific RT-PCR, Western blot, immunocytochemical staining and flow cytometry. Sequencing showed that the T cell-expressed GluR3 is identical with the brain GluR3. Glutamate (10 nM), in the absence of any additional molecule, triggered T cell function: integrin-mediated T cell adhesion to laminin and fibronectin, a function normally performed by activated T cells only. The effect of glutamate was mimicked by AMPA receptor-agonists and blocked specifically by the selective receptor-antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo[f]quinoxalin-2,3-dione (NBQX), and by relevant anti-integrin mAbs. Glutamate also increased the CXCR4-mediated T cell chemotactic migration toward the key chemokine CXCL12/stromal cell-derived factor-1. GluR3 expression on normal, cancer and autoimmune-associated T cells and the ability of glutamate to directly activate T cell function could be of substantial scientific and clinical importance to normal neuroimmune dialogues and to CNS diseases and injury, and especially to: 1) T cell transmigration to the CNS and patrolling in the brain, 2) T cell-mediated multiple sclerosis, and 3) autoimmune epilepsy, as neurotoxic anti-GluR3 Abs are found and suspected to cause/potentiate seizures and neuropathology in several types of human epilepsies. Thus far, GluR3 was found only on neurons and glia cells; our results reveal a novel peripheral source of this antigenic receptor.

Cite

CITATION STYLE

APA

Ganor, Y., Besser, M., Ben-Zakay, N., Unger, T., & Levite, M. (2003). Human T Cells Express a Functional Ionotropic Glutamate Receptor GluR3, and Glutamate by Itself Triggers Integrin-Mediated Adhesion to Laminin and Fibronectin and Chemotactic Migration. The Journal of Immunology, 170(8), 4362–4372. https://doi.org/10.4049/jimmunol.170.8.4362

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free