Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream

  • Narayan G
  • Zaidi T
  • et al.
93Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

The unprecedented volume and rate of transient events that will be discovered by the Large Synoptic Survey Telescope (LSST) demand that the astronomical community update its follow-up paradigm. Alert-brokers—automated software system to sift through, characterize, annotate, and prioritize events for follow-up—will be critical tools for managing alert streams in the LSST era. The Arizona-NOAO Temporal Analysis and Response to Events System ( ANTARES ) is one such broker. In this work, we develop a machine learning pipeline to characterize and classify variable and transient sources only using the available multiband optical photometry. We describe three illustrative stages of the pipeline, serving the three goals of early, intermediate, and retrospective classification of alerts. The first takes the form of variable versus transient categorization, the second a multiclass typing of the combined variable and transient data set, and the third a purity-driven subtyping of a transient class. Although several similar algorithms have proven themselves in simulations, we validate their performance on real observations for the first time. We quantitatively evaluate our pipeline on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, and demonstrate very competitive classification performance. We describe our progress toward adapting the pipeline developed in this work into a real-time broker working on live alert streams from time-domain surveys.

Cite

CITATION STYLE

APA

Narayan, G., Zaidi, T., Soraisam, M. D., Wang, Z., Lochner, M., … Zhu, S. (2018). Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream. The Astrophysical Journal Supplement Series, 236(1), 9. https://doi.org/10.3847/1538-4365/aab781

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free