We study the speed/fidelity trade-off for a two-qubit phase gate implemented in $^{43}$Ca$^+$ hyperfine trapped-ion qubits. We characterize various error sources contributing to the measured fidelity, allowing us to account for errors due to single-qubit state preparation, rotation and measurement (each at the $\sim0.1\%$ level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between $97.1(2)\%$ (for a gate time $t_g=3.8\mu$s) and $99.9(1)\%$ (for $t_g=100\mu$s), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case.
CITATION STYLE
Kim, J. (2014). Trapped Ions Make Impeccable Qubits. Physics, 7. https://doi.org/10.1103/physics.7.119
Mendeley helps you to discover research relevant for your work.