Automated Ki-67 labeling index assessment in prostate cancer using artificial intelligence and multiplex fluorescence immunohistochemistry

27Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Ki-67 labeling index (Ki-67 LI) is a strong prognostic marker in prostate cancer, although its analysis requires cumbersome manual quantification of Ki-67 immunostaining in 200–500 tumor cells. To enable automated Ki-67 LI assessment in routine clinical practice, a framework for automated Ki-67 LI quantification, which comprises three different artificial intelligence analysis steps and an algorithm for cell-distance analysis of multiplex fluorescence immunohistochemistry (mfIHC) staining, was developed and validated in a cohort of 12,475 prostate cancers. The prognostic impact of the Ki-67 LI was tested on a tissue microarray (TMA) containing one 0.6 mm sample per patient. A ‘heterogeneity TMA’ containing three to six samples from different tumor areas in each patient was used to model Ki-67 analysis of multiple different biopsies, and 30 prostate biopsies were analyzed to compare a ‘classical’ bright field-based Ki-67 analysis with the mfIHC-based framework. The Ki-67 LI provided strong and independent prognostic information in 11,845 analyzed prostate cancers (p < 0.001 each), and excellent agreement was found between the framework for automated Ki-67 LI assessment and the manual quantification in prostate biopsies from routine clinical practice (intraclass correlation coefficient: 0.94 [95% confidence interval: 0.87–0.97]). The analysis of the heterogeneity TMA revealed that the Ki-67 LI of the sample with the highest Gleason score (area under the curve [AUC]: 0.68) was as prognostic as the mean Ki-67 LI of all six foci (AUC: 0.71 [p = 0.24]). The combined analysis of the Ki-67 LI and Gleason score obtained on identical tissue spots showed that the Ki-67 LI added significant additional prognostic information in case of classical International Society of Urological Pathology grades (AUC: 0.82 [p = 0.002]) and quantitative Gleason score (AUC: 0.83 [p = 0.018]). The Ki-67 LI is a powerful prognostic parameter in prostate cancer that is now applicable in routine clinical practice. In the case of multiple cancer-positive biopsies, the sole automated analysis of the worst biopsy was sufficient. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

Cite

CITATION STYLE

APA

Blessin, N. C., Yang, C., Mandelkow, T., Raedler, J. B., Li, W., Bady, E., … Steurer, S. (2023). Automated Ki-67 labeling index assessment in prostate cancer using artificial intelligence and multiplex fluorescence immunohistochemistry. Journal of Pathology, 260(1), 5–16. https://doi.org/10.1002/path.6057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free