Heat transfer and energy consumption of passive house in a severely cold area: Simulation analyses

18Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

In order to improve the heat transfer in enclosure structure of passive houses in cold area with complex climatic conditions, a three-dimensional model is established to investigate the time-by-case changes of outdoor temperature and solar irradiation based on the principle of integral change and the method of response coefficient and harmonious wave reaction. The variations of hourly cooling and heating loads with outdoor temperature and solar irradiation are analyzed. As simulated by cloud computing technology, the passive building energy consumption meets the requirements of passive building specifications. In the present research, super-thermal insulation external wall, enclosure structure of energy-conserving doors and windows, and high efficiency heat recovery system are employed to achieve a constant temperature without active mechanical heating and cooling, which suggests a strategic routine to remarkably decrease the total energy consumption and annual operation cost of passive building.

Cite

CITATION STYLE

APA

Wang, F., Yang, W. J., & Sun, W. F. (2020). Heat transfer and energy consumption of passive house in a severely cold area: Simulation analyses. Energies, 13(3). https://doi.org/10.3390/en13030626

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free