This study aimed to investigate the environmental contamination of nucleic acid at 2019 novel coronavirus (2019-nCOV) vaccination site and to evaluate the effect of improvement to the vaccination process. Nucleic acid samples were collected from the surface of the objects in 2019-nCOV vaccination point A (used between 15 November 2020 and 25 December 2020) and point B (used after 27 December 2020) in a comprehensive tertiary hospital. Samples were collected from point A before improvement to the vaccination process, and from point B (B1 and B2) after improvement to the vaccination process. The real-time fluorescence polymerase chain reaction method was used for detection. The positive rate of vaccination room was 47.06% (24/51) at point A. No positive result was found in point B1 both at working hours (0/27) and after terminal disinfection (0/27). In point B2, the positive results were found in vaccine's outer packaging and staff gloves at working hours, with a positive rate of 7.41% (2/27). The positive rate was 0 (0/27) after terminal disinfection in point B2. The nucleic acid contamination in the vaccination room of 2019-nCOV vaccine nucleic acid sampling point is serious, which can be avoided through the improvement and intervention (such as personal protection, vaccination operation and disinfection methods).
CITATION STYLE
Li, Z., Zhang, B., Wu, X., Yang, M., Zhang, Q., Xiang, G., … Song, N. (2021). What is the status of nucleic acid contamination in 2019-nCOV vaccination sites? Can it be avoided? Epidemiology and Infection, 149. https://doi.org/10.1017/S0950268821001394
Mendeley helps you to discover research relevant for your work.