Tuning Ion Mobility in Lithium Argyrodite Solid Electrolytes via Entropy Engineering

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The development of improved solid electrolytes (SEs) plays a crucial role in the advancement of bulk-type solid-state battery (SSB) technologies. In recent years, multicomponent or high-entropy SEs are gaining increased attention for their advantageous charge-transport and (electro)chemical properties. However, a comprehensive understanding of how configurational entropy affects ionic conductivity is largely lacking. Herein we investigate a series of multication-substituted lithium argyrodites with the general formula Li6+x[M1aM2bM3cM4d]S5I, with M being P, Si, Ge, and Sb. Structure-property relationships related to ion mobility are probed using a combination of diffraction techniques, solid-state nuclear magnetic resonance spectroscopy, and charge-transport measurements. We present, to the best of our knowledge, the first experimental evidence of a direct correlation between occupational disorder in the cationic host lattice and lithium transport. By controlling the configurational entropy through compositional design, high bulk ionic conductivities up to 18 mS cm−1 at room temperature are achieved for optimized lithium argyrodites. Our results indicate the possibility of improving ionic conductivity in ceramic ion conductors via entropy engineering, overcoming compositional limitations for the design of advanced electrolytes and opening up new avenues in the field.

Cite

CITATION STYLE

APA

Lin, J., Schaller, M., Indris, S., Baran, V., Gautam, A., Janek, J., … Strauss, F. (2024). Tuning Ion Mobility in Lithium Argyrodite Solid Electrolytes via Entropy Engineering. Angewandte Chemie - International Edition, 63(30). https://doi.org/10.1002/anie.202404874

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free