Control of carbon assimilation and partitioning by jasmonate: An accounting of growth–defense tradeoffs

86Citations
Citations of this article
148Readers
Mendeley users who have this article in their library.

Abstract

Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.

Cite

CITATION STYLE

APA

Havko, N. E., Major, I. T., Jewell, J. B., Attaran, E., Browse, J., & Howe, G. A. (2016). Control of carbon assimilation and partitioning by jasmonate: An accounting of growth–defense tradeoffs. Plants, 5(1), 41–66. https://doi.org/10.3390/plants5010007

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free