Abstract
Human osteoblastic cells were grown in a three-dimensional (3-D) cell culture model and used to test the effects of a 20 Hz sinusoidal electromagnetic field (EMF; 6 mT and 113 mV/cm max) on collagen type I mRNA expression and extracellular matrix formation in comparison with the effects of growth factors. The cells were isolated from trabecular bone of a healthy individual (HO-197) and from a patient presenting with myositis ossificans (MO-192) and grown in a collagenous sponge-like substrate. Maximal enhancement of collagen type I expression after EMF treatment was 3.7-fold in HO-197 cells and 5.4-fold in MO-192 cells. Similar enhancement was found after transforming growth factor-β (TGF-β) and insulin-like growth factor-I (IGF-I) treatment. Combined treatment of the cells with EMF and the two growth factors TGF-β and IGF-I did not act synergistically. MO-192 cells produced an osteoblast-characteristic extracellular matrix containing collagen type I, alkaline phosphatase, and osteocalcin, together with collagen type III, TP-1, and TP-3, two epitopes of an osteoblastic differentiation marker. The data suggest that the effects of EMFs on osteoblastic differentiation are comparable to those of TGF-β and IGF-I. We conclude that EMF effects in the treatment of skeletal disorders and in orthopedic adjuvant therapy are mediated via enhancement of collagen type I mRNA expression, which may lead to extensive extracellular matrix synthesis. © 1998 Wiley-Liss, Inc.
Author supplied keywords
Cite
CITATION STYLE
Heermeier, K., Spanner, M., Träger, J., Gradinger, R., Strauss, P. G., Kraus, W., & Schmidt, J. (1998). Effects of Extremely Low Frequency Electromagnetic Field (EMF) on Collagen Type I mRNA Expression and Extracellular Matrix Synthesis of Human Osteoblastic Cells. Bioelectromagnetics, 19(4), 222–231. https://doi.org/10.1002/(SICI)1521-186X(1998)19:4<222::AID-BEM4>3.0.CO;2-3
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.