Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by hrms and in silico studies

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Aim: A new stability-indicating liquid chromatography method was developed and validated for the quantitative determination of luliconazole. Materials and methods: Preliminary forced degradation study demonstrated an additional peak of the degradation product at the same retention time to the drug, due to this, the method was developed optimizing the chromatographic conditions to provide sufficient peak resolution (R ≥ 2). The experimental design was evaluated to assess the robustness and the best chromatographic conditions to be used for the validation. Methodology: Luliconazole solutions were exposed to various stress conditions to evaluate the method indication stability, in which the degradation product (DP-1) formed was isolated, identified, and evaluated in silico to predict degradation pathway and toxicity. The procedure was validated by robustness, selectivity, linearity, precision, and accuracy. Liquid chromatography was performed in a Phenomenex® RP-18 column with a mixture of acetonitrile and 0.3% (v/v) triethylamine solution as a mobile phase in isocratic elution. Results and conclusions: The method demonstrated robustness, good recovery, precision, linear response over a range from 5.0 to 40.0 μg.mL-1, and to be stability indicating. The alkaline stress condition resulted in the formation of DP-1. hrms studies identified this product as an hydroxyacetamide derivative, and in silico studies did not show toxic potential.

Cite

CITATION STYLE

APA

dos Santos Porto, D., Bajerski, L., Malesuik, M. D., Azeredo, J. B., Paula, F. R., & Paim, C. S. (2021). Luliconazole: Stability-indicating LC method, structural elucidation of major degradation product by hrms and in silico studies. Revista Colombiana de Ciencias Quimico-Farmaceuticas(Colombia), 50(1), 61–85. https://doi.org/10.15446/rcciquifa.v50n1.89717

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free