A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices

49Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The prognosis of paraquat (PQ) poisoning is highly correlated to plasma PQ concentration, which has been identified as the most important index in PQ poisoning. This study investigated the predictive value of coagulation, liver, and kidney indices in prognosticating PQ-poisoning patients, when aligned with plasma PQ concentrations. Coagulation, liver, and kidney indices were first analyzed by variance analysis, receiver operating characteristic curves, and Fisher discriminant analysis. Then, a new, intelligent, machine learning-based system was established to effectively provide prognostic analysis of PQ-poisoning patients based on a combination of the aforementioned indices. In the proposed system, an enhanced extreme learning machine wrapped with a grey wolf-optimization strategy was developed to predict the risk status from a pool of 103 patients (56 males and 47 females); of these, 52 subjects were deceased and 51 alive. The proposed method was rigorously evaluated against this real-life dataset, in terms of accuracy, Matthews correlation coefficients, sensitivity, and specificity. Additionally, the feature selection was investigated to identify correlating factors for risk status. The results demonstrated that there were significant differences in the coagulation, liver, and kidney indices between deceased and surviving subjects (p<0.05). Aspartate aminotransferase, prothrombin time, prothrombin activity, total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, urea nitrogen, and creatinine were the most highly correlated indices in PQ poisoning and showed statistical significance (p<0.05) in predicting PQ-poisoning prognoses. According to the feature selection, the most important correlated indices were found to be associated with aspartate aminotransferase, the aspartate aminotransferase to alanine ratio, creatinine, prothrombin time, and prothrombin activity. The method proposed here showed excellent results that were better than that produced based on blood-PQ concentration alone. These promising results indicated that the combination of these indices can provide a new avenue for prognosticating the outcome of PQ poisoning.

Cite

CITATION STYLE

APA

Hu, L., Li, H., Cai, Z., Lin, F., Hong, G., Chen, H., & Lu, Z. (2017). A new machine-learning method to prognosticate paraquat poisoned patients by combining coagulation, liver, and kidney indices. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186427

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free