Translation elongation factor 1Bβ (eEF1Bβ) is a metazoan-specific protein catalyzing the guanine nucleotide exchange on translation elongation factor 1A (eEF1A). eEF1Bβ was reported to form oligomers. Aim: To define the structural region of human eEF1Bβ that mediates its self-association. In addition, the various truncated forms of this protein were tested in the guanine nucleotide exchange assay with two isoforms of mammalian eEF1A. Methods: The truncated forms of eEF1Bβ were generated by PCR, cloned, expressed in Escherichia coli and purified to homogeneity. Their apparent molecular masses were determined by analytical gel filtration and their guanine nucleotide exchange activities were assessed by filter binding assay. Results: Complete deletion of the N-terminal domain of eEF1Bβ does not affect its oligomerization propensity while deletion of the leucine-zipper motif drastically decreases the apparent molecular mass of the truncated form compared to the full-length protein. Also, the leucine-zipper motif of eEF1Bβ fused to glutathione S-transferase causes oligomerization of the chimeric protein. It was demonstrated that all N-terminally truncated forms of eEF1Bβ displayed similar catalytic activity to that of the full-length protein. Weak inhibitory effect on the catalytic activity was observed only for the truncated form with partially deleted central acidic region. Conclusions: The leucine-zipper motif facilitates oligomerization of recombinant eEF1Bβ. Stepwise deletion of the eEF1Bβ N-terminal domain does not significantly affect the guanine nucleotide exchange activity of the truncated proteins.
CITATION STYLE
Bondarchuk, T. V., Shalak, V. F., Negrutskii, B. S., & El’skaya, A. V. (2016). Leucine-zipper motif is responsible for self-association of translation elongation factor 1Bβ. Biopolymers and Cell, 32(1), 9–20. https://doi.org/10.7124/bc.000907
Mendeley helps you to discover research relevant for your work.