MicroRNA-223 induced repolarization of peritoneal macrophages using CD44 targeting hyaluronic acid nanoparticles for anti-inflammatory effects

44Citations
Citations of this article
58Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to evaluate macrophages repolarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype upon transfection with microRNA-223 (miR-223) duplexes and miR-223 expressing plasmid DNA encapsulated in CD44-targeting hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/miR-223 NPs with spherical shape and an average diameter of 200 nm were efficiently internalized by J774A.1 alveolar and primary peritoneal macrophages and non-cytotoxic at HA-PEI concentration less than 200 μg/mL. Transfection of HA-PEI/miR-223 NPs in J774A.1 macrophages showed significantly higher miR-223 expression than that with HA-PEI/plasmid DNA expressing miR-223 (pDNA-miR-223). HA-PEI/miR-223 NPs mediated transfection increased miR-223 expression to 90 fold in primary peritoneal macrophages compared to untreated cells. The overexpression of miR-223 in both J774A.1 and peritoneal macrophages induced a phenotypic change from M1 to M2 state as indicated by a decrease in iNOS-2 (M1 marker) and an increase in Arg-1 (M2 marker) levels compared to those in lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-stimulated macrophages (M1). The change in macrophage phenotype by HA-PEI/miR-223 NPs could suppress the inflammation in peritoneal macrophages induced by LPS as evidenced by a significant decrease in pro-inflammatory cytokine levels TNF-α, IL-1β and IL-6, compared to LPS-stimulated peritoneal macrophages without treatment. The results demonstrated that miR-223-encapsulated HA-PEI NPs modulated macrophage polarity toward an anti-inflammatory M2 phenotype, which has potential for the treatment of inflammatory diseases.

Cite

CITATION STYLE

APA

Tran, T. H., Krishnan, S., & Amiji, M. M. (2016). MicroRNA-223 induced repolarization of peritoneal macrophages using CD44 targeting hyaluronic acid nanoparticles for anti-inflammatory effects. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0152024

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free