The hemoglobin-dilution method (HDM) has been used to estimate changes in vascular volumes in patients because direct measurements with radioisotopes are time-consuming and not practical in many facilities. The HDM requires an assumption of initial blood volume, repeated measurements of plasma hemoglobin concentration, and the calculation of the ratio of hemoglobin measurements. The statistics of these ratio distributions resulting from measurement error are ill-defined even when the errors are normally distributed. This study uses a "Monte Carlo" approach to determine the distribution of these errors. The finding was that these errors could be closely approximated with a log-normal distribution that can be parameterized by a geometric mean (X) and a dispersion factor (S). When the ratio of successive Hb concentrations is used to estimate blood volume, normally distributed hemoglobin measurement errors tend to produce exponentially higher values of X and S as the SD of the measurement error increases. The longer tail of the distribution to the right could produce much greater overestimations than would be expected from the SD values of the measurement error; however, it was found that averaging duplicate and triplicate hemoglobin measurements on a blood sample greatly improved the accuracy.
CITATION STYLE
Wolf, M. B. (2017). Hemoglobin-Dilution Method: Effect of Measurement Errors on Vascular Volume Estimation. Computational and Mathematical Methods in Medicine, 2017. https://doi.org/10.1155/2017/3420590
Mendeley helps you to discover research relevant for your work.