Abstract
Solution NMR spectroscopy is a well-established tool with unique advantages for structural studies of RNA molecules. However, for large RNA sequences, the NMR resonances often overlap severely. A reliable way to perform resonance assignment and allow further analysis despite spectral crowding is the use of site-specific isotope labeling in sample preparation. While solid-phase oligonucleotide synthesis has several advantages, RNA length and availability of isotope-labeled building blocks are persistent issues. Purely enzymatic methods represent an alternative and have been presented in the literature. In this study, we report on a method in which we exploit the preference of T7 RNA polymerase for nucleotide monophosphates over triphosphates for the 5’ position, which allows 5’-labeling of RNA. Successive ligation to an unlabeled RNA strand generates a site-specifically labeled RNA. We show the successful production of such an RNA sample for NMR studies, report on experimental details and expected yields, and present the surprising finding of a previously hidden set of peaks which reveals conformational exchange in the RNA structure. This study highlights the feasibility of site-specific isotope-labeling of RNA with enzymatic methods.
Cite
CITATION STYLE
Feyrer, H., Gurdap, C. O., Marušič, M., Schlagnitweit, J., & Petzold, K. (2022). Enzymatic incorporation of an isotope-labeled adenine into RNA for the study of conformational dynamics by NMR. PLoS ONE, 17(7 July). https://doi.org/10.1371/journal.pone.0264662
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.