Abstract
The major methods of biomass thermal conversion are combustion in excess oxygen, gasification in reduced oxygen, and pyrolysis in the absence of oxygen. The end products of these methods are heat, gas, liquid and solid fuels. From the point of view of energy production, none of these methods can be considered optimal. A two-stage thermal conversion of biomass based on pyrolysis as the first stage and pyrolysis products cracking as the second stage can be considered the optimal method for energy production that allows obtaining synthesis gas consisting of hydrogen and carbon monoxide and not containing liquid or solid particles. On the base of the two stage cracking technology, there was designed an experimental power plant of electric power up to 50 kW. The power plant consists of a thermal conversion module and a gas engine power generator adapted for operation on syngas. Purposes of the work were determination of an optimal operation temperature of the thermal conversion module and an optimal mass ratio of processed biomass and charcoal in cracking chamber of the thermal conversion module. Experiments on the pyrolysis products cracking at various temperatures show that the optimum cracking temperature is equal to 1000 °C. From the results of measuring the volume of gas produced in different mass ratios of charcoal and wood biomass processed, it follows that the maximum volume of the gas in the range of the mass ratio equal to 0.5-0.6.
Cite
CITATION STYLE
Kosov, V. V., & Zaichenko, V. M. (2016). Development and optimization of a two-stage gasifier for heat and power production. In Journal of Physics: Conference Series (Vol. 774). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/774/1/012135
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.