Dry shrinkage and durability performance of cement stabilized graded stone with framework and dense structure

4Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this paper, the mechanical, dry shrinkage and frost resistance performance of cement stabilized graded stone with framework and dense structure were investigated. A higher cement content owns a correspondingly better mechanical performance. With the different moisture content, the dry shrinkage and frost resistance performance of cement stabilized graded stone showed a similar improving and deteriorating trend. The specimens (sample 0, 1, 2, 3), with different moisture content (4%, 5%, 6%, 7%) in a 6% cement content, were measured and analyzed. A sample contained low moisture content has a relatively loose and dry mixtures, which owns a insufficient cement hydration reaction and low strength, finally leads to a weaker dry shrinkage resistance performance. Moreover, the high moisture content sample has a damp and flabby reaction procedure, which has a larger amount of moisture evaporation and further deteriorated dry shrinkage. The moisture content significantly influence the pore parameters of prepared samples, whose trend followed those of dry shrinkage and frost resistance performance. The pore size distribution of these composites shifted toward smaller pore size scope with a proper moisture content. In addition, scanning electron micrographs (SEM) showed that the denser microstructure of prepared cement stabilized graded stones.

Cite

CITATION STYLE

APA

Cui, K., & Lic, W. (2016). Dry shrinkage and durability performance of cement stabilized graded stone with framework and dense structure. Materials Research, 19(1), 215–219. https://doi.org/10.1590/1980-5373-MR-2015-0204

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free