End-bridging is required for pol μ to efficiently promote repair of noncomplementary ends by nonhomologous end joining

54Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

DNA polymerase μ is a member of the mammalian pol X family and reduces deletion during chromosome break repair by nonhomologous end joining (NHEJ). This biological role is linked to pol μ's ability to promote NHEJ of ends with noncomplementary 3′ overhangs, but questions remain regarding how it performs this role. We show here that synthesis by pol μ in this context is often rapid and, despite the absence of primer/template base-pairing, instructed by template. However, pol μ is both much less active and more prone to possible template independence in some contexts, including ends with overhangs longer than two nucleotides. Reduced activity on longer overhangs implies pol μ is less able to synthesize across longer gaps, arguing pol μ must bridge both sides of gaps between noncomplementary ends to be effective in NHEJ. Consistent with this argument, a pol μ mutant defective specifically on gapped substrates is also less active during NHEJ of noncomplementary ends both in vitro and in cells. Taken together, pol μ activity during NHEJ of noncomplementary ends can thus be primarily linked to pol μ's ability to work together with core NHEJ factors to bridge DNA ends and perform a template-dependent gap fill-in reaction. © 2008 The Author(s).

Cite

CITATION STYLE

APA

Davis, B. J., Havener, J. M., & Ramsden, D. A. (2008). End-bridging is required for pol μ to efficiently promote repair of noncomplementary ends by nonhomologous end joining. Nucleic Acids Research, 36(9), 3085–3094. https://doi.org/10.1093/nar/gkn164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free