Motivation: In recent years, single-cell biology has focused on the relationship between the stochastic nature of molecular interactions and variability of cellular behavior. To describe this relationship, it is necessary to develop new computational approaches at the single-cell level. Results: We have developed AgentCell, a model using agent-based technology to study the relationship between stochastic intracellular processes and behavior of individual cells. As a test-bed for our approach we use bacterial chemotaxis, one of the best characterized biological systems. In this model, each bacterium is an agent equipped with its own chemotaxis network, motors and flagella. Swimming cells are free to move in a 3D environment. Digital chemotaxis assays reproduce experimental data obtained from both single cells and bacterial populations. © The Author 2005. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E., & Cluzel, P. (2005). AgentCell: A digital single-cell assay for bacterial chemotaxis. Bioinformatics, 21(11), 2714–2721. https://doi.org/10.1093/bioinformatics/bti391
Mendeley helps you to discover research relevant for your work.