Simulation of blood flow and nanoparticle transport in a stenosed carotid bifurcation and pseudo-arteriole

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Numerical simulation of flow through a realistic bifurcated carotid artery geometry with a stenosis has been conducted for comparison to experimental measurements. The behaviour of simplified therapeutic nanoparticles in relatively low concentration was observed using a discrete particle approach. The role of size (diameters from 500 nm to 50 nm) in determining particle residence time and the potential for both desirable and undesirable wall interactions was investigated. It was found that mean particle residence time reduced with decreasing particle diameter, and the percentage of particles experiencing one or more wall interactions increased simultaneously. Further simulations were conducted on a scaled-down version of the geometry which approximated the size and flow conditions of an arteriole with capillary branches, and in this instance the mean residence time increased with decreasing particle diameter, owing largely to the greater influence of Brownian motion. 33% of all 50 nm particles were involved in wall interactions, indicating that smaller particles would have a greater ability to target, for instance, cancerous tumours in such regions.

Cite

CITATION STYLE

APA

Doig, G., Yeoh, G. H., Timchenko, V., Rosengarten, G., Barber, T. J., & Cheung, S. C. P. (2012). Simulation of blood flow and nanoparticle transport in a stenosed carotid bifurcation and pseudo-arteriole. Journal of Computational Multiphase Flows, 4(1), 85–102. https://doi.org/10.1260/1757-482X.4.1.85

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free