Abstract
Inspired by Waddington’s illustration of an epigenetic landscape, cell-fate transitions have been envisioned as bifurcating dynamical systems, wherein exogenous signaling dynamics couple to a cell’s enormously complex signaling and transcriptional machinery, to elicit qualitative transitions in the cell’s collective state. Single-cell RNA sequencing (scRNA-seq), which measures the distributions of possible transcriptional states in large populations of differentiating cells, provides an alternate view, in which development is marked by the variations of a myriad of genes. Here, we present a mathematical formalism for rigorously evaluating, from a dynamical systems perspective, whether scRNA-seq trajectories display statistical signatures consistent with bifurcations and, as a case study, pinpoint regions of multistability along the neutrophil branch of hematopoeitic differentiation. Additionally, we leverage the geometric features of linear instability to identify the low-dimensional phase plane in gene expression space within which the multistability unfolds, highlighting novel genetic players crucial for neutrophil differentiation. Broadly, we show that a dynamical systems treatment of scRNA-seq data provides mechanistic insights into the high-dimensional processes of cellular differentiation, taking a step toward systematic construction of mathematical models for transcriptomic dynamics.
Author supplied keywords
Cite
CITATION STYLE
Freedman, S. L., Xu, B., Goyal, S., & Mani, M. (2023). A dynamical systems treatment of transcriptomic trajectories in hematopoiesis. Development (Cambridge), 150(11). https://doi.org/10.1242/dev.201280
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.