Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive surrogate-based method called SURROGATE-ASF to solve computationally expensive multiobjective optimisation problems. This method employs preference information of a decision-maker. Numerical results demonstrate that SURROGATE-ASF efficiently provides preferred solutions for a decision-maker. It can handle different types of problems involving for example multimodal objective functions and nonconvex and/or disconnected Pareto frontiers.
CITATION STYLE
Tabatabaei, M., Hartikainen, M., Sindhya, K., Hakanen, J., & Miettinen, K. (2019). An interactive surrogate-based method for computationally expensive multiobjective optimisation. Journal of the Operational Research Society, 70(6), 898–914. https://doi.org/10.1080/01605682.2018.1468860
Mendeley helps you to discover research relevant for your work.