Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer

76Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Background Poly(ADP-ribose) polymerase (PARP) inhibitors (eg, olaparib) are effective against BRCA-mutated cancers at/near maximum tolerated doses by trapping PARP-1 on damaged chromatin, benefitting only small patient proportions. The benefits of targeting non-DNA repair aspects of PARP with metronomic doses remain unexplored. Methods Colon epithelial cells or mouse or human bone marrow (BM)-derived-myeloid-derived suppressor cells (MDSCs) were stimulated to assess the effect of partial PARP-1 inhibition on inflammatory gene expression or immune suppression. Mice treated with azoxymethane/four dextran-sulfate-sodium cycles or APC Min/+ mice bred into PARP-1 +/-or treated with olaparib were used to examine the role of PARP-1 in colitis-induced or spontaneous colon cancer, respectively. Syngeneic MC-38 cell-based (microsatellite instability, MSI high) or CT-26 cell-based (microsatellite stable, MSS) tumor models were used to assess the effects of PARP inhibition on host responses and synergy with anti-Programmed cell Death protein (PD)-1 immunotherapy. Results Partial PARP-1 inhibition, via gene heterozygosity or a moderate dose of olaparib, protected against colitis-mediated/APC Min-mediated intestinal tumorigenesis and APC Min-Associated cachexia, while extensive inhibition, via gene knockout or a high dose of olaparib, was ineffective or aggravating. A sub-IC50-olaparib dose or PARP-1 heterozygosity was sufficient to block tumorigenesis in a syngeneic colon cancer model by modulating the suppressive function, but not intratumoral migration or differentiation, of MDSCs, with concomitant increases in intratumoral T cell function and cytotoxicity, as assessed by granzyme-B/interferon-γlevels. Adoptive transfer of WT-BM-MDSCs abolished the protective effects of PARP-1 heterozygosity. The mechanism of MDSC modulation involved a reduction in arginase-1/inducible nitric oxide synthase/cyclo-oxygenase-2, but independent of PARP-1 trapping on chromatin. Although a high-concentration olaparib or the high-Trapping PARP inhibitor, talazoparib, activated stimulator of interferon gene (STING) in BRCA-proficient cells and induced DNA damage, sub-IC50 concentrations of either drug failed to induce activation of the dsDNA break sensor. STING expression appeared dispensable for MDSC suppressive function and was not strictly required for olaparib-mediated effects. Ironically, STING activation blocked human and mouse MDSC function with no additive effects with olaparib. A metronomic dose of olaparib was highly synergistic with anti-PD-1-based immunotherapy, leading to eradication of MSI high or reduction of MSS tumors in mice. Conclusions These results support a paradigm-shifting concept that expands the utility of PARP inhibitor and encourage testing metronomic dosing of PARP inhibitor to enhance the efficacy of checkpoint inhibitor-based immunotherapies in cancer.

Cite

CITATION STYLE

APA

Ghonim, M. A., Ibba, S. V., Tarhuni, A. F., Errami, Y., Luu, H. H., Dean, M. J., … Boulares, A. H. (2021). Targeting PARP-1 with metronomic therapy modulates MDSC suppressive function and enhances anti-PD-1 immunotherapy in colon cancer. Journal for ImmunoTherapy of Cancer, 9(1). https://doi.org/10.1136/jitc-2020-001643

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free