Abstract
An analytic time series in the form of numerical solution (in an appropriate finite time interval) of the Hodgkin-Huxley current clamped (HHCC) system of four differential equations, well known in the neurophysiology as an exact empirical model of excitation of a giant axon of Loligo, is presented. Then we search for a second-order differential equation of generalized Fitzhugh-Nagumo (GFN) type, having as a solution the given single component (action potential) of the numerical solution. The given time series is used as a basis for reconstructing orders, powers, and coefficients of the polynomial right-hand sides of GFN equation approximately governing the process of action potential. For this purpose, a new geometrical method for determining phase space dimension of the unknown dynamical system (GFN equation) and a specific modification of least squares method for identifying unknown coefficients are developed and applied. Copyright © 2003 Hindawi Publishing Corporation. All rights reserved.
Cite
CITATION STYLE
Georgiev, N. V. (2003). Identifying generalized Fitzhugh-Nagumo equation from a numerical solution of Hodgkin-Huxley model. Journal of Applied Mathematics, 2003(8), 397–407. https://doi.org/10.1155/S1110757X03211037
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.