High Performance All Nonmetal SiNx Resistive Random Access Memory with Strong Process Dependence

31Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

All-nonmetal resistive random access memory (RRAM) with a N+–Si/SiNx/P+–Si structure was investigated in this study. The device performance of SiNx developed using physical vapor deposition (PVD) was significantly better than that of a device fabricated using plasma-enhanced chemical vapor deposition (PECVD). The SiNx RRAM device developed using PVD has a large resistance window that is larger than 104 and exhibits good endurance to 105 cycles under switching pulses of 1 μs and a retention time of 104 s at 85 °C. Moreover, the SiNx RRAM device developed using PVD had tighter device-to-device distribution of set and reset voltages than those developed using PECVD. Such tight distribution is crucial to realise a large-size cross-point array and integrate with complementary metal-oxide-semiconductor technology to realise electronic neurons. The high performance of the SiNx RRAM device developed using PVD is attributed to the abundant defects in the PVD dielectric that was supported by the analysed conduction mechanisms obtained from the measured current–voltage characteristics.

Cite

CITATION STYLE

APA

Yen, T. J., Chin, A., & Gritsenko, V. (2020). High Performance All Nonmetal SiNx Resistive Random Access Memory with Strong Process Dependence. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-59838-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free