Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating

32Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channel plays a central role in the generation and modulation of intracellular Ca2+ signals, and is intricately regulated by multiple mechanisms including cytoplasmic ligand (InsP3, free Ca2+, free ATP4-) binding, posttranslational modifications, and interactions with cytoplasmic and endoplasmic reticulum (ER) luminal proteins. However, regulation of InsP3R channel activity by free Ca2+ in the ER lumen ([Ca2+]ER) remains poorly understood because of limitations of Ca2+ flux measurements and imaging techniques. Here, we used nuclear patch-clamp experiments in excised luminal-side-out configuration with perfusion solution exchange to study the effects of [Ca2+]ER on homotetrameric rat type 3 InsP3R channel activity. In optimal [Ca2+]i and subsaturating [InsP3], jumps of [Ca2+]ER from 70 nM to 300 μM reduced channel activity significantly. This inhibition was abrogated by saturating InsP3 but restored when [Ca2+]ER was raised to 1.1 mM. In suboptimal [Ca2+]i, jumps of [Ca2+]ER (70 nM to 300 μM) enhanced channel activity. Thus, [Ca2+]ER effects on channel activity exhibited a biphasic dependence on [Ca2+]i. In addition, the effect of high [Ca2+]ER was attenuated when a voltage was applied to oppose Ca2+ flux through the channel. These observations can be accounted for by Ca2+ flux driven through the open InsP3R channel by [Ca2+]ER, raising local [Ca2+]i around the channel to regulate its activity through its cytoplasmic regulatory Ca2+-binding sites. Importantly, [Ca2+]ER regulation of InsP3R channel activity depended on cytoplasmic Ca2+-buffering conditions: it was more pronounced when [Ca2+]i was weakly buffered but completely abolished in strong Ca2+-buffering conditions. With strong cytoplasmic buffering and Ca2+ flux sufficiently reduced by applied voltage, both activation and inhibition of InsP3R channel gating by physiological levels of [Ca2+]ER were completely abolished. Collectively, these results rule out Ca2+ regulation of channel activity by direct binding to the luminal aspect of the channel. © 2012 Vais et al.

Cite

CITATION STYLE

APA

Vais, H., Kevin Foskett, J., Ullah, G., Pearson, J. E., & Mak, D. O. D. (2012). Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. Journal of General Physiology, 140(6), 697–716. https://doi.org/10.1085/jgp.201210804

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free