Butterfly M2IIIEr2 (MIII = Fe and Al) SMMs: Synthesis, Characterization, and Magnetic Properties

17Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The reaction of N-(2-pyridylmethyl)iminodiethanol (H2L, pmide), FeCl2·4H2O or AlCl3·6H2O with ErCl3·6H2O and p-Me-PhCO2H in the ratio of 2:1:1:4 in the presence of Et3N in MeOH and MeCN yielded compounds [Fe2Er2(μ3-OH)2(pmide)2(p-Me-PhCO2)6]·2MeCN (1) and [Al2Er2(μ3-OH)2(pmide)2(p-Me-PhCO2)6]·2MeCN (2). These two complexes are isostructural, possessing a planar butterfly motif with the ErIII ions in the wingtip positions. Both compounds show single molecule magnet (SMM) behavior. For the [Al2Er2] compound, the slow relaxation of the magnetization under zero applied direct current (dc) field does not show maxima, but the relaxation processes could be analyzed using an applied dc field of 1000 Oe. In-depth alternating current measurements under different dc fields on the [Fe2Er2] compound reveals that the Fe-Fe and Fe-Er interactions speed up the relaxation and decrease the energy barrier height of the SMM in comparison with the [Al2Er2] case.

Cite

CITATION STYLE

APA

Peng, Y., Mereacre, V., Anson, C. E., & Powell, A. K. (2018). Butterfly M2IIIEr2 (MIII = Fe and Al) SMMs: Synthesis, Characterization, and Magnetic Properties. ACS Omega, 3(6), 6360–6368. https://doi.org/10.1021/acsomega.8b00550

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free